$P V=n R T$
$c=\lambda \cdot \nu$
$P(V-n b)=n R T$
$\left(P+a \frac{n^{2}}{V^{2}}\right)(V-n b)=n R T$
$P_{\text {total }}=P_{\mathrm{A}}+P_{\mathrm{B}}+P_{\mathrm{C}}+\cdots$
$x_{\mathrm{A}}=\frac{P_{\mathrm{A}}}{P_{\text {total }}}$
$E_{\mathrm{k}}=U=\frac{3}{2} R T$
$v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}$
$E=h \nu$
$E_{\mathrm{k}}=\frac{1}{2} m v^{2}=h \nu-\Phi$
$E_{\mathrm{n}}=-\mathscr{R}\left(\frac{1}{n^{2}}\right)$
$\Delta E=\mathscr{R}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
$E_{\mathrm{P}} \propto \frac{q_{1} q_{2}}{r}$
$\Delta U=q+w$
$w=-P \Delta V \quad w=-\Delta n R T$
$H=U+P V$
$\Delta U=\Delta H-P \Delta V$
$\Delta U=\Delta H-\Delta n R T$
$q_{\mathrm{sys}}=-q_{\mathrm{cal}}$
$q_{\mathrm{cal}}=q_{\text {water }}+q_{\text {hardware }}$
$\begin{array}{ll}\Delta U=q_{\mathrm{v}} & \Delta H=q_{\mathrm{p}} \\ q=n C_{\mathrm{m}} \Delta T & q=m C_{\mathrm{s}} \Delta T \\ q=n \Delta H_{\text {trans }} & q=m \Delta H_{\text {trans }}\end{array}$
$\Delta H_{\mathrm{rxn}}=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}+\cdots$
$\Delta H_{\mathrm{rxn}}^{\circ}=\sum n \Delta H_{\mathrm{f}}^{\circ}(\mathrm{prod})-\sum n \Delta H_{\mathrm{f}}^{\mathrm{\circ}}($ react $)$
$\Delta H_{\mathrm{rxn}}=\sum B E($ breaking $)-\sum B E($ making $)$
$\Delta G_{\mathrm{rxn}}^{\circ}=\sum n \Delta G_{\mathrm{f}}^{\mathrm{o}}(\mathrm{prod})-\sum n \Delta G_{\mathrm{f}}^{\mathrm{o}}($ react $)$
$\Delta S_{\mathrm{rxn}}^{\circ}=\sum n S^{\circ}($ prod $)-\sum n S^{\circ}($ react $)$
$G=H-T S$
$S=k \ln \Omega$
$\Delta G=\Delta H-T \Delta S$
$\Delta S=\frac{q_{\mathrm{rev}}}{T}$
$\Delta S_{\text {trans }}=\frac{\Delta H_{\text {trans }}}{T_{\text {trans }}}$
$\Delta S=n C \ln \left(\frac{T_{2}}{T_{1}}\right)$

